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Abstract

Two potentially asymmetric players compete for a prize of common value, which is

initially unknown, by exerting effort. A designer has two instruments for contest design.

First, she decides whether and how to disclose an informative signal of the prize value

to players. Second, she sets the scoring rule for the contest, which can be biased in

favor of one player. We show that the optimum depends on the designer’s objective.

An ex post symmetric contest—in which information is symmetrically distributed and

the scoring rule offsets the initial asymmetry between players—always maximizes the

expected total effort. However, the optimal contest may create dual asymmetry—i.e.,

the designer discloses the signal privately to one player, while favoring the other in

terms of the scoring rule—when the designer is concerned about the expected winner’s

effort or the expected maximum effort. This could arise even if the players are ex

ante symmetric. Our results are qualitatively robust to an endogenous information

structure.
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1 Introduction

A wide array of competitive activities exemplify a contest, ranging from college ad-

missions, sporting events, competitive procurement, and R&D contests that solicit novel

solutions (Taylor, 1995; Fullerton and McAfee, 1999; Che and Gale, 2003) to internal labor

markets inside firms (Lazear and Rosen, 1981; Green and Stokey, 1983; Nalebuff and Stiglitz,

1983; Rosen, 1986). Extensive scholarly effort has been devoted to identifying feasible and

efficient means of administering such competitions (see, e.g., Fang, Noe, and Strack, 2020;

Fu and Wu, 2020; Lemus and Marshall, 2021; Hofstetter, Dahl, Aryobsei, and Herrmann,

2021).

We examine the design of a contest that jointly employs two instruments: (i) an in-

formation disclosure scheme and (ii) a scoring bias. Two observations motivate us. First,

discriminatory measures, which treat certain contenders preferentially, are widespread in

competitive activities. For instance, preferred contenders competing for promotion to a

higher rung on the corporate ladder may be intentionally nurtured by the incumbent CEO

and board members. Alternatively, many governments grant small and medium-sized enter-

prises preferences in public procurement auctions. It is essential that we address questions

regarding whether to treat certain contestants preferentially, and if so, whom and to what

extent.

Second, participants can encounter uncertainty regarding the contest’s nature and the

surrounding environment, such as the value of the prize. In a competition for a promotion,

employees may not have full information about the nuances of the new role, such as the

scope of responsibilities, available resources, and implications for their career trajectory. In

another context, contractors vying for a government procurement contract may lack details

about the true costs of fulfilling the contract. Thus, contestants’ behavior can be influenced

by the information available to them regarding the value of the “prize” they are competing

for. This highlights the potential for strategic information disclosure: what information to

disclose, and to whom.

We address these questions by allowing a contest designer to (i) selectively disclose her

information to only one contestant and (ii) bias the contest in favor of one contestant.

We show that the two instruments play complementary roles, and their proper combination

enhances the contest’s performance. Prior studies have typically focused on using only one of

the instruments. Our study thus joins the growing trend in joint contest design that employs

multiple instruments (e.g., Halac, Kartik, and Liu, 2017; Ely, Georgiadis, Khorasani, and

Rayo, 2022).

Snapshot of the Model Two players simultaneously exert effort to vie for a prize of a

common value. The prize value is initially unknown and can be either high or low. Player
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1 bears a weakly higher marginal effort cost—i.e., c1 ≥ c2—and is thus the underdog. Each

player’s effort is converted into a score, and the higher scorer wins.

The designer conducts an investigation and acquires an informative binary signal about

the true prize value. Prior to the competition, the designer commits to the contest rule,

which consists of two elements. First, a disclosure scheme specifies how the signal is disclosed.

The disclosure scheme is asymmetric when the signal is conveyed to only one player, which

awards the recipient an information advantage. For instance, the organizer of a business

pitching competition may brief preferred entrepreneurs more elaborately on the funding

opportunities available to winning projects. Second, a multiplier is imposed on each player’s

effort to generate his score. We normalize the multiplier for the underdog—i.e., player 1—to

one and that for player 2 to δ > 0, which is called a scoring bias. The bias can be interpreted

as a nominal judging rule, as well as measures that elevate or discount players’ (perceived)

output.

We mainly consider two objectives for contest design. The first is the usual maximization

of expected total effort (see, e.g., Moldovanu and Sela, 2001; Moldovanu, Sela, and Shi, 2007).

For instance, the government may use R&D challenges to fuel the society’s total investment

in a certain technological area; e.g., clean energy or AI. The second is the maximization of

the expected winner ’s effort (see, e.g., Moldovanu and Sela, 2006; Fu and Wu, 2022). For

instance, in a contest for a corporate leadership role, the capability of the eventual winner

is what will drive the value of the company.

Summary of Results The contest game can be viewed as an all-pay auction with inter-

dependent valuations and discrete signal spaces. Siegel (2014) provided the technique for

the case with a neutral scoring rule δ = 1. We allow for a scoring bias and adapt Siegel’s

technique to characterize the equilibrium, which paves the way for contest design.

The optimal contest design crucially depends on whether the designer aims to maximize

the expected total effort or the expected winner’s effort. Intuitively, the difference is driven

partly by the fact that the expected total effort is the sum of the means, while the expected

winner’s effort is the modified first-order statistic of the (random) effort choices by the two

players.1

Results for the maximization of expected total effort affirm the conventional wisdom of

leveling the playing field. The optimum is an ex post symmetric contest : (i) Players are either

symmetrically informed or symmetrically uninformed, and (ii) the contest sets the scoring

1It is noteworthy that in our context, the expected winner’s effort is not the simple highest effort, except
for the case of δ = 1. Under a biased scoring rule (δ 6= 1), the winner may not be the one who exerts
the highest effort. We thus call the expected winner’s effort a modified first-order statistic to reflect the
nuance. In Section 4.2, we also discuss the case in which the designer’s objective is to maximize the expected
maximum effort, i.e., the first-order statistic.
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bias to δ = c2/c1. Neither player possesses superior information, and the bias δ = c2/c1—

called the fair bias of the contest—precisely offsets the initial advantage of player 2 in terms

of bidding efficiency.

However, the optimum can notably depart from the conventional wisdom when the

designer maximizes the expected winner’s effort. The designer may prefer a tilting-and-

releveling contest, which distorts the contest in two dimensions and creates ex post dual

asymmetry between players. Specifically, the designer feeds the signal exclusively to one

player, while releveling the playing field by letting the scoring bias deviate from the fair

level to favor the other. A tilting-and-releveling contest could enable an upward shift of the

winner’s effort distribution to elevate the expected winner’s effort.

Section 3.2 delves into the logic in depth. Three observations are notable. First, the

tilting-and-releveling contest can be optimal even if players are ex ante symmetric—i.e., c1 =

c2 (Theorem 1). Second, with asymmetric players, an optimal tilting-and-releveling contest

awards the underdog the information advantage, while compensating the stronger player with

a more favorable scoring bias (Theorem 2). Third, the two instruments—i.e., the disclosure

scheme and scoring bias—are complementary. Specifically, asymmetry never emerges in the

optimum if the designer is restricted to deploying only one instrument (Remark 1), and thus

the optimal contest requires either ex post symmetry or dual asymmetry.

We extend our model to two alternative settings. First, we endogenize the information

structure of the designer’s investigation, which corresponds to the concept of the Bayesian

persuasion approach pioneered by Kamenica and Gentzkow (2011). Second, we consider

contest design when the designer is concerned about the expected maximum effort. Our main

results remain qualitatively robust, and the discussion sheds further light on the fundamental

trade-off entailed in our context.

Related Literature Our contest model is a variant of the family of all-pay auctions with

interdependent valuations, which includes Krishna and Morgan (1997); Lizzeri and Persico

(2000); Siegel (2014); Rentschler and Turocy (2016); Lu and Parreiras (2017); and Chi,

Murto, and Välimäki (2019). Our study is primarily linked to two strands of the literature

on contest design: (i) optimal biases as (identity-dependent) differential treatment of players

and (ii) information disclosure. To the best of our knowledge, we are the first to allow the

designer to choose their optimal combination.

The literature on optimal biases has conventionally espoused the merits of a level playing

field for incentive provision—e.g., Epstein, Mealem, and Nitzan (2011); Franke, Kanzow,

Leininger, and Schwartz (2013, 2014); Franke, Leininger, and Wasser (2018). A handful of

recent studies—e.g., Drugov and Ryvkin (2017); Fu and Wu (2020); Barbieri and Serena

(2022); Wasser and Zhang (2023); Echenique and Li (2022)—identify the contexts in which
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optimal biases further upset the balance of the playing field. This strand of studies typically

abstract away the issue of information disclosure.

The literature has increasingly recognized information disclosure as a valuable addition

to the toolkit for contest design. For example, Yildirim (2005); Aoyagi (2010); Ederer (2010);

Goltsman and Mukherjee (2011); Halac, Kartik, and Liu (2017); Lemus and Marshall (2021);

and Ely, Georgiadis, Khorasani, and Rayo (2022) examine information feedback in dynamic

contests. Halac et al. (2017) and Ely et al. (2022) also consider a prize allocation rule. They

focus on homogeneous players and symmetric information disclosure. Further, the prize is

allocated based on players’ outcome and cannot depend on a player’s identity. In contrast, we

consider a static setting and focus on the interaction between the scoring rule and disclosure

scheme, and allow for potentially asymmetric players and selective disclosure; in addition,

our scoring rule permits identity-dependent preferential treatment.

Our paper is closely related to studies on disclosing information on contestants’ types, in-

cluding Wärneryd (2012); Lu, Ma, and Wang (2018), Serena (2022); Zhang and Zhou (2016);

Chen and Chen (2022); Melo-Ponce (2021); and Antsygina and Teteryatnikova (2023). These

studies focus exclusively on disclosure schemes and portray strategic information disclosure

as a device that balances competition, which aligns with the conventional wisdom of leveling

the playing field. In contrast, we show that a designer can create information asymmetry

when she controls both the disclosure scheme and scoring rule.

In the context of private-value auctions, Bergemann and Pesendorfer (2007) consider a

joint design problem with which the seller is able to control the accuracy by which bidders

learn their valuation and to whom to sell at what price. They demonstrate the optimality

of creating informational asymmetry together with an asymmetric follow-up design.

The rest of the paper proceeds as follows. Section 2 sets up the model, and Section 3

characterizes the optimal contest. Section 4 presents further discussions and extensions, and

Section 5 concludes. Equilibrium analysis is provided in Appendix A and proofs of our main

results are collected in Appendix B.

2 The Model

Two risk-neutral players, indexed by i ∈ N ≡ {1, 2}, compete for a prize of a common

value v ∈ {vH , vL}, with vH > vL > 0. The high value vH is realized with a probability Pr(v =

vH) =: µ ∈ (0, 1), with the low value vL to be realized with the complementary probability.

Players are initially uninformed about v, while its distribution is common knowledge. They

simultaneously exert effort xi ≥ 0 to win the prize. One’s effort incurs a constant marginal

cost ci > 0. Without loss of generality, player 2 is assumed to be the stronger contender;

i.e., c1 ≥ c2.
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Winner-selection Mechanism and Scoring Bias The contest designer imposes a scor-

ing bias δi > 0 on each player i’s effort entry xi, which generates his score δixi. We normalize

δ1 to 1 and set δ2 = δ > 0. The scoring rule is biased when δ deviates from 1, which favors

player 2 if δ > 1 and player 1 otherwise. We call δ = c2/c1(≤ 1) the fair bias, which perfectly

offsets player 1’s initial disadvantage.

A player wins if his score exceeds that of the opponent. The winner is picked randomly

in the event of a tie in scores. Fixing a set of effort entries x := (x1, x2) ∈ R2
+, player 1’s

wining probability is

p1(x1, x2) =


1, if x1 > δx2,

1
2
, if x1 = δx2,

0, if x1 < δx2,

and player 2 wins with a probability p2(x1, x2) = 1− p1(x1, x2).

Disclosure Schemes The designer conducts an investigation and obtains a verifiable noisy

signal s ∈ {H,L} regarding the prize value v. The signal is drawn as follows:

Pr
(
s = H

∣∣ v = vH

)
= Pr

(
s = L

∣∣ v = vL

)
= q, (1)

where q ∈
(

1
2
, 1
]

indicates the quality or precision of the signal.2 The signal perfectly reveals

the prize value with q = 1 and is completely uninformative with q = 1/2.

The designer precommits to her disclosure scheme—i.e., how the result of her investiga-

tion is to be disclosed. The disclosure scheme can formally be described by γ ∈ {CC,CD,DC,DD},
where C and D indicate “concealment” and “disclosure,” respectively. With a symmetric

disclosure scheme γ = CC(DD), the realized signal s is conveyed to neither (both) of the

players. With γ = CD, the designer conceals the signal from player 1 while disclosing it to

player 2; γ = DC is similarly defined.

Contest Design Prior to the contest, the designer chooses (δ, γ) to maximize either (i) the

expected total effort of the contest, denoted by TE(γ, δ; c1, c2), or (ii) the expected winner’s

effort, denoted by WE(γ, δ; c1, c2).3 The former design objective has conventionally been

adopted in the vast majority of the contest literature, which resembles revenue maximization

2We will endogenize the information structure using a Bayesian persuasion approach (e.g., Kamenica and
Gentzkow, 2011) in Section 4.1.

3By maximizing the expected winner’s effort, we assume the designer is committed to adopting the
winning product under the context of R&D contests. Alternatively, the designer may lack commitment
power, in which case she will adopt the best product regardless of whether the contestant submitting the
best product wins the contest prize. For these contests, the designer’s objective is to maximize expected
maximum effort. We will consider this alternative design objective in Section 4.2.
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in the auction literature. The latter, however, is also relevant in a broad array of competitive

activities and has attracted increasing attention in recent studies.4

Preliminaries: Equilibrium and Notation It is well known that an all-pay auction

with complete information or a discrete signal structure, in general, does not possess pure-

strategy equilibria (see, e.g., Hillman and Riley, 1989; Baye, Kovenock, and De Vries, 1996;

Siegel, 2009, 2010, 2014). Siegel (2014) provides a technique for constructing the unique

mixed-strategy equilibrium of an all-pay auction under a neutral scoring rule; i.e., δ = 1. We

adapt his result to our context—which allows for an arbitrary scoring bias δ > 0—and fully

characterize the equilibrium in the interim bidding stage under each possible (γ, δ). The

equilibrium result further enables the solution to TE(γ, δ; c1, c2) and WE(γ, δ; c1, c2). The

analysis is tedious and complicated, so we relegate all details to Appendix A. We discuss the

properties of the equilibrium when interpreting the results of optimal contests.

Several types of notation are presented to pave the way for subsequent discussion. Define

v̄ := µvH + (1 − µ)vL, which denotes the ex ante expected prize value. Upon receiving a

signal s = H, a player’s expected prize value is updated to

v̂H(q) :=
µqvH + (1− µ)(1− q)vL
µq + (1− µ)(1− q)

.

Similarly, the posterior upon receiving s = L is

v̂L(q) :=
µ(1− q)vH + (1− µ)qvL
µ(1− q) + (1− µ)q

.

A signal s = H is realized with an ex ante probability µ̂(q) := µq + (1− µ)(1− q).
The following observation is worth stating before we lay out the full results of optimal

contest design.

Lemma 1 (Ex ante Equivalence of Symmetric Disclosure Schemes) Fixing a

scoring rule δ > 0, the symmetric disclosure schemes generate the same ex ante equi-

librium outcomes in terms of the expected total effort and expected winner’s effort—i.e.,

TE(CC, δ; c1, c2) = TE(DD, δ; c1, c2), and WE(CC, δ; c1, c2) = WE(DD, δ; c1, c2).

3 Optimal Contest

The solutions to equilibrium expected total effort TE(γ, δ; c1, c2) and the expected win-

ner’s effort WE(γ, δ; c1, c2) are presented in Appendix A, which enable analysis of the op-

4See, e.g., Moldovanu and Sela (2006); Barbieri and Serena (2021); Fu and Wu (2022); and Wasser and
Zhang, 2023).
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timum. We begin with the case of symmetric players—i.e., c1 = c2 > 0. Discussion of the

simple case elucidates the main insight of this paper and lays a foundation for the analysis

of asymmetric players.

3.1 Optimal Contest with Symmetric Players

Consider the case of symmetric players with c1 = c2 =: c > 0. We have the following.

Theorem 1 (Optimal Contest with Symmetric Players) Fix q ∈ (1/2, 1] and sup-

pose that c1 = c2 = c > 0. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, 1)

and (γ∗TE, δ
∗
TE) = (DD, 1) are an optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) > 4v̂L(q), both (γ∗WE, δ
∗
WE) =

(
CD, µ̂(q)

)
and (γ∗WE, δ

∗
WE) =

(
DC, 1/µ̂(q)

)
are an optimal contest scheme; in the case with µ̂(q)v̂H(q) ≤ 4v̂L(q), both (γ∗WE, δ

∗
WE) =

(CC, 1) and (γ∗WE, δ
∗
WE) = (DD, 1) are an optimal contest scheme.

The optimal contest depends on the design objectives. Theorem 1(i) is intuitive and

echoes the conventional wisdom of the contest literature: A level playing field creates com-

petition and intensifies effort supply. The contest maintains symmetry to maximize the

expected total effort: A fair bias δ = c2/c1 = 1, together with a symmetric disclosure—

i.e., γ ∈ {CC,DD}. However, Theorem 1(ii) shows that to maximize the expected win-

ner’s effort, it may be optimal for the designer to deliberately create ex post dual asymme-

try between players: She tilts the playing field by awarding information advantage to one

player, while releveling the playing field by biasing the scoring rule in favor of the other.

A tilting-and-releveling contest,
(
CD, µ̂(q)

)
or
(
DC, 1/µ̂(q)

)
, is optimal when the condition

µ̂(q)v̂H(q) > 4v̂L(q) is met.

To interpret the result, it is useful to understand the bidding equilibrium under symmetric

disclosure vis-à-vis that under asymmetric disclosure.

Equilibrium under Symmetric Disclosure The equilibrium under a symmetric disclo-

sure scheme with discrete signal spaces resembles that in a standard complete-information

all-pay auction. Under δ = 1, each player’s effort is uniformly distributed over the interval

[0, v̂s(q)/c] under DD, where v̂s(q) is the updated expected prize value upon receiving a

signal s ∈ {H,L}. Analogously, one’s effort under CC is uniformly distributed over [0, v̄/c].

A symmetric contest, (DD, 1) or (CC, 1), fully extracts their surplus and achieves the

first-best outcome for maximization of expected total effort. Suppose instead that a biased
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(a) δ = 1. (b) δ > 1.

Figure 1: Equilibrium Strategies with Symmetric Players: γ = DD.

scoring rule is in place, e.g., δ > 1. Player 2 secures a sure win by bidding v̂s(q)/(δc) under

DD (or v̄/(δc) under CC), which allows him to enjoy a positive surplus. The handicapped

player 1 continues to bid up to v̂s(q)/c under DD (or v̄/c under CC), but he now stays

inactive—i.e., exerting zero effort—with a positive probability. The biased scoring rule is

obviously suboptimal for either design objective. We visualize this rationale in Figure 1 for

the case of γ = DD.

Equilibrium under Asymmetric Disclosure Asymmetric disclosure fundamentally changes

the nature of the equilibrium. We focus on the case of γ = DC and begin with δ = 1.

Players’ equilibrium bidding strategies are depicted in Figure 2(a). Player 1 is informed,

and thus his equilibrium bidding strategy is signal-dependent. Specifically, the efforts of

player 1 upon receiving signal L, referred to as player 1L, are uniformly distributed on[
0, [1− µ̂(q)]v̂L(q)/c

]
, while those of player 1H are distributed on

[
[1− µ̂(q)]v̂L(q)/c, v̄/c

]
(see Proposition 2 in Appendix A). The equilibrium is monotone, in the sense that the bidding

supports of players 1H and 1L do not overlap. Player 2’s efforts are distributed over the in-

terval
[
0, v̄/c

]
, but the densities differ in the two contiguous intervals of

[
0, [1− µ̂(q)]v̂L(q)/c

]
and

[
[1− µ̂(q)]v̂L(q)/c, v̄/c

]
.

Player 1L—due to his lower updated expected prize valuation—is effectively an underdog

when competing with the uninformed player 2. The distribution of his efforts includes zero,

which implies a zero equilibrium payoff for him. In contrast, player 1H—as a result of

receiving H signal—has a higher expected prize valuation, and becomes a favorite in the

contest against player 2. The upper support of his efforts remains at v̄/c, although he can

bid up to v̂H(q)/c while retaining a positive payoff. He has no incentive to bid more than

v̄/c because player 2’s prize valuation remains v̄ and thus his effort is capped by v̄/c.

This observation prompts the natural question of how player 1H can be further incen-

tivized, which inspires tilting and releveling.
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(a) δ = 1. (b) 1 < δ < 1/µ̂(q).

(c) δ = 1/µ̂(q).

Figure 2: Equilibrium Strategies with Symmetric Players: γ = DC.

Tilting and Releveling Raising δ above 1 incentivizes player 1H. We illustrate this

rationale in Figure 2(b). A scoring bias δ > 1 favors player 2 and further discourages player

1L; the upper support of his efforts falls in response. In contrast, player 1H continues to

enjoy an upper hand for δ in the range of
[
1, 1/µ̂(q)

]
; but an effort v̄/c no longer guarantees

a sure win, so the unfavorable scoring rule compels him to step up his effort: The upper

support of his effort increases with δ. The bidding support for player 2 shrinks because he

is privileged by the favorable bias, which allows him to slack off.

The tilting-and-releveling distortion cannot outperform a fully symmetric contest when

the designer’s objective is to maximize the total effort because a fully symmetric contest

maximizes players’ participation and fully dissipates their rents. In contrast, we show below

that the tilting-and-releveling contest can be optimal when the designer’s objective is to

maximize the expected winner’s effort, since player 1H can be forced to bid more than v̄/c.

The main reason different designer objectives can have drastically contrasting implica-

tions regarding the optimal mechanism is as follows. When the designer aims to maximize

expected total effort, both players’ effort evenly accrues to the designer’s payoff; however, if

the designer is concerned about the expected winner’s effort, only the winner’s effort (i.e., the

modified first-order statistic) matters: The tilting-and-releveling contest “gives up” the low-

type informed player 1, but the loss is compensated for by the better-incentivized high-type

counterpart. The details are discussed below.
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Tilting-and-Releveling as an Optimal Contest By Theorem 1(ii), with γ = DC,

a bias δ = 1/µ̂(q) could maximize the expected winner’s effort. By Lemma 1, fixing δ,

contests under symmetric disclosure, eitherDD or CC, generate the same ex ante equilibrium

outcomes. It thus suffices to compare the tiling-and-releveling contest
(
DC, 1/µ̂(q)

)
with a

fully symmetric contest (CC, 1) to explain the underlying trade-off.

Recall that under (CC, 1), players maintain their prior throughout, so their efforts are uni-

formly distributed over [0, v̄/c]. Players’ equilibrium strategies in the contest
(
DC, 1/µ̂(q)

)
are illustrated in Figure 2(c). Imagine first that a low signal s = L is realized. The negative

shock, together with the unfavorable scoring rule, forces player 1L to give up—i.e., with

his bidding strategy degenerating to a singleton at zero—which clearly causes inefficiency

compared with the case of (CC, 1). However, player 2 remains uninformed and is immune to

the negative shock; he remains active, which provides insurance for the performance of the

contest. Then suppose s = H. Player 1—because of the upwardly revised prize expectation

and the unfavorable scoring rule—may bid more than v̄/c, and the upper support reaches

v̂H(q)/c. The contest, when maximizing the expected winner’s effort, could outperform

(CC, 1).

A trade-off looms large, which ultimately depends on µ̂(q), v̂H(q), and v̂L(q). First,

tilting and releveling could yield a gain when a high signal is realized, which occurs with

a probability of µ̂(q). Therefore,
(
DC, 1/µ̂(q)

)
is more likely to outperform (CC, 1) with a

large µ̂(q). Second, the gain is more significant when the signal prompts substantial upward

revision in prize valuation—i.e., from v̄ to v̂H(q)—which requires a larger v̂H(q) relative to

v̂L(q). Summing these gives rise to the condition µ̂(q)v̂H(q) > 4v̂L(q) for the optimality of(
DC, 1/µ̂(q)

)
. The scoring bias δ = 1/µ̂(q) relevels the contest under γ = DC. This lets

the two players, 1H versus 2, win with an equal probability when a high signal is realized;

it also perfectly eliminates the rent afforded to player 1 by his information advantage.

This rationale continues to apply when players are asymmetric, i.e., c1 > c2. Tilting and

releveling may well emerge as the optimum, which we discuss in Section 3.2. With asym-

metric players, the designer should also decide to whom—the strong or the weak player—to

award the information advantage and whom to favor in terms of scoring bias.

Complementarity between Information Disclosure and Scoring Bias Before we

proceed, it is worth noting that the two instruments, information disclosure and scoring

bias, play complementary roles. That is, the optimum is either a fully symmetric contest

or a tilting-and-releveling contest that embraces dual asymmetry. Suppose the designer is

allowed to distort the contest in only dimension, either setting the disclosure scheme while

maintaining a neutral scoring rule or biasing the scoring rule while being constrained by

symmetric disclosure. The following ensues.
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Remark 1 (Unidimensional Contest Design with Symmetric Players) Fix q ∈
(1/2, 1] and suppose that c1 = c2. The following statements hold:

(i) Fix δ = 1. A symmetric disclosure scheme—i.e., γ ∈ {CC,DD}—maximizes both

expected total effort and the expected winner’s effort simultaneously.

(ii) Fix γ ∈ {CC,DD}. The neutral scoring bias—i.e., δ = 1—maximizes both expected

total effort and the expected winner’s effort simultaneously.

With a neutral scoring rule δ = 1, an asymmetric disclosure scheme cannot force the high-

type player 1 to raise his maximum effort above v̄/c, as Figure 2(a) illustrates. Similarly,

with a symmetric disclosure scheme in place, biasing the scoring rule only allows the favored

player to slack off, as Figure 1(b) shows. Asymmetry is suboptimal when contest can be

manipulated in only one dimension.

3.2 Optimal Contest with Asymmetric Players

We now consider the case of asymmetric players with c1 > c2. The following ensues.

Theorem 2 (Optimal Contest with Asymmetric Players) Fix q ∈ (1/2, 1] and sup-

pose that c1 > c2. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, c2/c1)

and (γ∗TE, δ
∗
TE) = (DD, c2/c1) are an optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) >
(

2 c2
c1

+ 2
)
v̂L(q), the optimal scheme is (γ∗WE, δ

∗
WE) =

(
DC, c2

µ̂(q)c1

)
; in the

case with µ̂(q)v̂H(q) ≤
(

2 c2
c1

+ 2
)
v̂L(q), both (γ∗WE, δ

∗
WE) = (CC, c2/c1) and (γ∗WE, δ

∗
WE) =

(DD, c2/c1) are an optimal contest scheme.

Theorem 2(i), again, affirms the conventional wisdom of leveling the playing field un-

der the design objective of maximizing expected total effort. With a symmetric disclosure

scheme, the “fair” bias δ = c2/c1 perfectly offsets the ex ante asymmetry in bidders’ marginal

effort costs, which ensures that the designer is able to fully extract the players’ surplus.

However, Theorem 2(ii) states that a tilting-and-releveling contest
(
DC, c2/µ̂(q)c1

)
could

be optimal when the designer’s objective is to maximize the expected winner’s effort. The

underdog, player 1, is provided with an information advantage. The bias δ = c2/[µ̂(q)c1]

relevels the competition between players 1H and 2—as 1/µ̂(q) does in the symmetric case—

and discourages player 1L entirely. The same trade-off for the designer looms large, as

in the case with symmetric players. It is worth noting that the releveling bias c2/[µ̂(q)c1]
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could remain literally biased against player 2—i.e., c2/[µ̂(q)c1] < 1—if players are excessively

heterogeneous. However, it is more favorable to player 2 relative to the “fair” bias c2/c1—i.e.,

c2/[µ̂(q)c1] > c2/c1—to offset player 1’s information advantage.

To understand why the weaker player 1 receives an information advantage, recall that in

a tilting-and-releveling contest, (i) the low-type informed player is fully discouraged—which

incurs a loss—and (ii) the uninformed player stays active regardless—which provides insur-

ance. First, giving up the weaker player (player 1 when a low signal is realized) minimizes

the loss, since his higher marginal cost limits the forgone effort. Second, keeping the stronger

player (player 2) active maximizes the insurance for contest performance. Despite the exit

of the low-type informed player with s = L, the uninformed player continues to bid actively

and his contribution provides insurance for contest performance, which mitigates the loss.

This rationale can further be illustrated by the condition µ̂(q)v̂H(q) > [2(c2/c1) + 2]v̂L(q)

for the optimality of the tilting-and-releveling contest. It is more likely when players are

more asymmetric, i.e., with a smaller c2/c1: The loss incurred when s = L is less significant

because the forgone effort of player 1L is limited by his relatively high cost, while the

insurance provided by player 2 is large because of his relatively low cost.

4 Extensions

In this section, we discuss two alternative scenarios that further affirm the main results

underlying our model.

4.1 Endogenous Information Structure

We now let the designer flexibly design the information structure of her investigation.

She is endowed with full control over the amount of information to be revealed through the

investigation and the form of the signal to be disclosed to players. This corresponds to the

concept of Bayesian persuasion (Kamenica and Gentzkow, 2011).

An information structure consists of a signal space S and a pair of likelihood distributions{
π(·|vH), π(·|vL)

}
over S.5 The designer sets

(
γ, δ,

{
π(·|vH), π(·|vL)

})
to maximize either

the expected total effort or the expected winner’s effort.

Our exercise remains a limited information design problem. First, we aim to determine

who should receive the information. This question becomes moot if the signal structure is

fully endogenized. Second, addressing a general information design problem in our context

5For instance, the information structure depicted in Section 2 involves a binary signal space S = {H,L}
and a conditional likelihood distribution for each underlying state—i.e., vH or vL—parameterized by q [see
Equation (1)].

12



is technically challenging: The potential correlation between signals would substantially

complicate analysis of common-valued all-pay auctions.

We can show that it suffices to consider a binary signal space in our setting, i.e., S =

{H,L}. Denote by vπs the expected prize value conditional on s, i.e., E(v|s). Without loss of

generality, assume that realization of s = H gives rise to a higher expected prize value, i.e.,

vπH ≥ vπL. In addition, define µπ := Pr(s = H). We can adapt the analysis in Appendix A to

obtain the equilibrium by replacing v̂H(q), v̂L(q), and µ̂(q) with vπH , vπL, and µπ, respectively.

It is straightforward to verify that designing the information structure
{
π(·|vH), π(·|vL)

}
is

equivalent to choosing the tuple (vπH , v
π
L, µ

π) that satisfies the following Bayes-plausibility

constraint (Kamenica and Gentzkow, 2011):6

vH ≥ vπH > v̄ > vπL ≥ vL, and µπvπH + (1− µπ)vπL = v̄. (2)

To search for the optimal information structure, we simply express the designer’s objective

as a function of (vπH , v
π
L, µ

π) and optimize over (vπH , v
π
L, µ

π) subject to constraint (2).7 The

following result ensues.

Theorem 3 (Optimal Contest with an Endogenous Information Structure) Sup-

pose that c1 ≥ c2. Consider the joint design of scoring bias δ > 0, disclosure scheme γ, and

information structure
{
π(·|vH), π(·|vL)

}
. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, c2/c1)

and (γ∗TE, δ
∗
TE) = (DD, c2/c1) with any information structure

{
π(·|vH), π(·|vL)

}
are an

optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then

(a) in the case in which v̄/vL > 2c2/c1 + 2, the optimal contest scheme consists of

(γ∗WE, δ
∗
WE) =

(
DC, c2/(µ

πc1)
)

and

π
(
H|vH

)
= 1, π

(
H|vL

)
=

0, if v̄
vL
≥ 4− 2µ+ 2 c2

c1
,

4−2µ+2
c2
c1
− v̄
vL

2(1−µ)
, if 2 c2

c1
+ 2 < v̄

vL
< 4− 2µ+ 2 c2

c1
;

6We require that π(s|v) not be completely uninformative—i.e., vπH > vπL. If a completely uninformative
information structure is desirable—i.e., vπH = vπL—the designer can simply choose γ = CC to conceal the
signal from both players.

7The optimization problem can be very involved, given that (i) the designer now optimizes over five di-
mensions (γ, δ, vπH , v

π
L, µ

π) and (ii) the objective functions TE(γ, δ; c1, c2) and WE(γ, δ; c1, c2) are piecewise
functions with complex expressions. We overcome the difficulty and solve for the optimum by reducing
dimensionality step by step. We first pin down the set of biases δ that can be optimal under arbitrary disclo-
sure policy γ and the information structure encapsulated by (vπH , v

π
L, µ

π), then optimize over all information
structures. Last, we compare different disclosure policies to obtain the optimum.
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(a) Symmetric Players: (c1, c2) = (1, 1) (b) Asymmetric Players: (c1, c2) = (1, 0.3)

Figure 3: Winner’s Effort-maximizing Contest Scheme with an Endogenous Information
Structure.

(b) in the case in which v̄/vL ≤ 2c2/c1 + 2, both (γ∗WE, δ
∗
WE) = (CC, c2/c1) and

(γ∗WE, δ
∗
WE) = (DD, c2/c1) with an arbitrary information structure

{
π(·|vH), π(·|vL)

}
are an optimal contest scheme.

The implications of our baseline model largely extend. Theorem 3(i) states that when

maximizing expected total effort, the optimal contest requires symmetric distribution of

information. However, the specific information structure is irrelevant, so the designer does

not benefit from the freedom to set the information structure.

By Theorem 3(ii), the designer may, again, tilt and relevel to maximize the expected win-

ner’s effort when the condition v̄/vL > 2c2/c1 +2 is met. In contrast to maximizing expected

total effort, the prevailing information structure plays a role in achieving the optimum. As in

the baseline model, the weaker contender, player 1, exclusively receives the signal. When the

ratio v̄/vL is sufficiently large—i.e., v̄/vL ≥ 4 − 2µ + 2c2/c1—the optimum requires perfect

revelation, i.e., π(H|vH) = π(L|vL) = 1. When the ratio falls in the intermediate range—i.e.,

v̄/vL ∈ (2c2/c1 + 2, 4− 2µ+ 2c2/c1)—partial revelation emerges.

Theorem 3(ii) can similarly be interpreted in light of the rationale outlined in Section 3.

A tilting-and-releveling contest is optimal when a high signal s = H is more likely and

the signal triggers substantial revision of expected prize value, which requires large µπ and

vπH/v
π
L. Constraint (2) implies that for this purpose, the designer should perfectly reveal

the state vL—i.e., set vπL = vL—as predicted in Theorem 3(ii). Further, rearranging the
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Bayes-plausibility constraint (2) yields

vπH
vπL

=
vπH
vL

= 1 +
v̄ − vL
vL

× 1

µπ
,

which unveils the designer’s trade-off of increasing µπ versus increasing vπH/v
π
L. When the

term (v̄ − vL)/vL—or the term v̄/vL—is large, an increase in µπ would lead to a significant

decrease in vπH/v
π
L. This compels the designer to increase vπH/v

π
L, which implies perfect

revelation for the optimum, i.e., vπH = vH . The trade-off leads to partial revelation for

a moderate value of v̄/vL, as in Theorem 3(ii). Figure 3 illustrates the optimum in the

(µ, vL/vH) space for maximization of the expected winner’s effort.

4.2 Expected Maximum Effort

As stated in Footnote 1, with a scoring bias δ 6= 1 the winner of the contest may not

exert the higher effort. Maximizing the expected winner’s effort presumes that the designer

benefits only from the winning entry, which, as pointed out in Footnote 3, is plausible when

the designer cannot separate the prize distribution and adoption of the contestant—e.g.,

admissions contests at elite universities or competitions for promotions inside firms. In some

contexts the designer may give the prize to a contestant according to possibly biased scoring

rules, but nonetheless benefit from the contestant with the higher effort. For instance, Netflix

organized a contest for algorithmic designs to improve its recommendation system and did

not adopt the prize winner’s algorithm.8 In this subsection, we consider the case in which the

designer’s objective is to maximize the expected maximum effort of the contestants, which

we denote by ME(γ, δ; c1, c2).

Comparing an ex post symmetric contest (CC, c2/c1) to a tilting-and-releveling contest

(CD, µ̂(q)c2/c1) leads to the following.

Theorem 4 (Expected-maximum-effort-maximizing Contests) Consider two con-

tests (CC, c2/c1) and (CD, µ̂(q)c2/c1). The former generates a higher expected maximum

effort than the latter if and only if

v̂L(q)

v̂H(q)
>

c2
c1
µ̂(q)

{
3− [1 + µ̂(q)] c2

c1

}
3 + ( c2

c1
)2

. (3)

A fully general analysis is difficult. However, together with numerical exercises, we can

verify that the optimal contest is either (CC, c2/c1) or (CD, µ̂(q)c2/c1). Theorem 4 thus

establishes the sufficient and necessary condition for the optimality of a tilting-and-releveling

8See tinyurl.com/37kdtz74.
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(a) Symmetric Players: (c1, c2) = (1, 1) (b) Asymmetric Players: (c1, c2) = (1, 0.3)

Figure 4: Expected-maximum-effort-maximizing Contest Scheme: q = 0.95.

contest. Analogous to the case of maximizing the expected winner’s effort, dual asymmetry

can be optimal if players are ex ante symmetric, i.e., c2/c1 = 1.

However, in contrast to the previous case, the designer, when tilting and releveling, would

give the information advantage to the stronger player. Awarding the information advantage

to the stronger player requires handicapping him through a sufficiently unfavorable scoring

bias. This is suboptimal when the designer’s objective is to maximize the expected winner’s

effort: The stronger player can contribute a relatively high effort because of his lower cost,

but a large handicap excessively reduces his winning odds. This concern does not apply

when the designer maximizes the expected maximum effort: The designer can benefit from

the stronger player’s effort even if he does not win.

Figure 4 illustrates the optimum in the (µ, vL/vH) space for maximization of the expected

maximum effort, holding fixed q = 0.95.

5 Concluding Remarks

This paper studies the optimal design of a contest in which two players compete for a

common-valued prize. The designer chooses a combination of two instruments—an informa-

tion disclosure scheme and a scoring bias—to advance her interests. The optimum depends

on the designer’s objective. When the designer aims to maximize the expected total effort

of the contestants, the optimum embraces the conventional wisdom of leveling the playing

field: Information is symmetrically distributed, and a “fair” (i.e., compensating) scoring bias

offsets the initial asymmetry between the players in their marginal cost of effort. However,
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when the designer’s objective is to maximize the expected winner’s effort or the expected

maximum effort, the optimum may feature dual asymmetry: The designer discloses the sig-

nal privately to one player only, while a favorable scoring rule compensates the other. We

call such contest a tilting-and-releveling contest, and show that it could emerge as the opti-

mum even if the players are ex ante symmetric in their marginal costs of effort. We further

show that the results are qualitatively robust to extensions to an endogenous information

structure.

Our paper is one of the first in the contest literature to examine the optimal combination

of multiple design instruments. It is noteworthy that the two instruments demonstrate

complementarity, in that the optimal contest requires either ex post full symmetry or dual

asymmetry. Asymmetry is thus suboptimal in settings of unidimensional contest design.

Our results generate novel implications for contest design and shed fresh light on the debate

regarding the relationship between (a)symmetry and the performance of a contest.
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Appendix A Equilibrium Analysis

In this appendix, we characterize the equilibrium under an arbitrary contest scheme

(γ, δ), with γ ∈ {CC,CD,DC,DD} and δ > 0 and calculate the resulting expected total

effort and expected winner’s effort. Our analysis is adapted from Siegel (2014), who provides

the technique for the case with a neutral scoring rule δ = 1; here we allow for a scoring bias.

A.1 Equilibrium Results

We first characterize the equilibrium under a symmetric information disclosure scheme,

i.e., γ ∈ {CC,DD}, in which case neither player possesses information favoritism.

Proposition 1 (Equilibrium Characterization under Symmetric Disclosure) Un-

der γ = DD, the contest game generates a unique equilibrium, which can be characterized

as follows:

(i) If δ < c2
c1

, then

b1s(x;DD, δ) =

 c2
δv̂s(q)

, if 0 < x ≤ δv̂s(q)
c2

,

0, otherwise,

b2s(x;DD, δ) =


1− δc1

c2
, if x = 0,

δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
c2
,

0, otherwise.

(ii) If δ ≥ c2
c1

, then

b1s(x;DD, δ) =


1− c2

δc1
, if x = 0,

c2
δv̂s(q)

, if 0 < x ≤ v̂s(q)
c1
,

0, otherwise,

b2s(x;DD, δ) =

 δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
δc1

,

0, otherwise.

(iii) The equilibrium bidding strategy under γ = CC, denoted by bi(x;CC, δ), can be ob-

tained by replacing v̂s(q) with v̄ ≡ µvH + (1− µ)vL in bis(x;DD, δ).

Next, we consider the equilibrium under each asymmetric disclosure scheme, i.e., γ = CD

or DC, in which case one player receives the signal privately.
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Proposition 2 (Equilibrium Characterization under Asymmetric Disclosure)

Under γ = DC, the contest game generates a unique equilibrium, which can be characterized

as follows:

(i) If δ < c2
c1

, then

b1L(x;DC, δ) =

 c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤ δ[1−µ̂(q)]v̂L(q)
c2

,

0, otherwise,

b1H(x;DC, δ) =

 c2
δµ̂(q)v̂H(q)

, if δ[1−µ̂(q)]v̂L(q)
c2

< x ≤ δv̄
c2
,

0, otherwise,

b2(x;DC, δ) =



1− δc1
c2
, if x = 0,

δc1
v̂L(q)

, if 0 < x ≤ [1−µ̂(q)]v̂L(q)
c2

,

δc1
v̂H(q)

, if [1−µ̂(q)]v̂L(q)
c2

< x ≤ v̄
c2
,

0, otherwise.

(ii) If c2
c1
≤ δ ≤ c2

µ̂(q)c1
, then

b1L(x;DC, δ) =


1

1−µ̂(q)

(
1− c2

δc1

)
, if x = 0,

c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

,

0, otherwise,

b1H(x;DC, δ) =


c2

δµ̂(q)v̂H(q)
, if

[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

< x ≤ v̂L(q)
c1

+ δµ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise,

b2(x;DC, δ) =


δc1
v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

,

δc1
v̂H(q)

, if
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

< x ≤ v̂L(q)
δc1

+ µ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise.

(iii) If δ > c2
µ̂(q)c1

, then

b1L(x;DC, δ) =

1, if x = 0,

0, otherwise,
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b1H(x;DC, δ) =


1− c2

δc1µ̂(q)
, if x = 0,

c2
δµ̂(q)v̂H(q)

, if 0 < x ≤ v̂H(q)
c1

,

0, otherwise,

b2(x;DC, δ) =

 δc1
v̂H(q)

, if 0 < x ≤ v̂H(q)
δc1

,

0, otherwise.

The equilibrium under (CD, δ) can be obtained similarly.

A.2 Expected Total Effort and the Expected Winner’s Effort

Propositions 1 and 2 lead to the following.

Lemma 2 (Expected Total Effort under Different Contest Schemes) Fixing a con-

test scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the contest generates an

equilibrium expected total effort

TE(CC, δ; c1, c2) = TE(DD, δ; c1, c2) =


δv̄(c1+c2)

2c22
, if δ < c2

c1
,

v̄(c1+c2)

2δc21
, if δ ≥ c2

c1

(4)

for symmetric disclosure schemes. Under asymmetric disclosure schemes, the equilibrium

expected total effort of the contest can be obtained as

TE(DC, δ; c1, c2) = TE(CD, 1/δ; c2, c1)

=


δ(c1+c2)(v̂L(q)+µ̂(q)2v̂H(q)−µ̂(q)2v̂L(q))

2c22 , if δ < c2
c1
,

c1+c2
2c1c2

[
c2
δc1
v̂L(q) + δc1

c2
µ̂(q)2(v̂H(q)− v̂L(q))

]
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

(c1+c2)v̂H(q)

2δc21
, if δ > c2

µ̂(q)c1
.

(5)

Further, we derive the equilibrium expected winner’s efforts. The following ensues.

Lemma 3 (Expected Winner’s Effort under Different Contest Schemes) Fixing

a contest scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the equilibrium expected

winner’s effort from the contest game is

WE(CC, δ; c1, c2) = WE(DD, δ; c1, c2) =


δv̄(2c1+3c2−c1δ)

6c22 , if δ < c2
c1
,

v̄(3c1δ−c2+2c2δ)
6c12δ2 , if δ ≥ c2

c1
,

(6)
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and

WE(DC, δ; c1, c2) =


v̂L(q)
6c1c2
W1

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if δ < c2

c1
,

v̂L(q)
6c1c2
W2

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

v̂H(q)
6c1c2
W3

(
δc1
c2

; c1, c2

)
, if δ > c2

µ̂(q)c1
,

(7)

where W1(·, ·, ·), W2(·, ·, ·), and W3(·) are defined as follows:

W1(u, z, d; c1, c2) : = −c2

(
u3z + 1

)
d2 +

{
u2z

[
3(c1 + c2)− c1u

]
+ 2c1 + 3c2

}
d,

W2(u, z, d; c1, c2) : =
d3
(
−u2

)
z
[
u(c1 + c2d)− 3(c1 + c2)

]
+ 3c1d− c1 + 2c2d

d2
,

W3(d; c1, c2) : =
c1(3d− 1) + 2c2d

d2
.

Moreover, we have that WE(CD, δ; c1, c2) = WE(DC, 1/δ; c2, c1).

Lemmas 2 and 3 pave the way for our analysis of the optimal contest design.

A.3 Proofs of Propositions 1 and 2 and Lemmas 2 and 3

Proof. It can be verified that the strategy profiles provided in Propositions 1 and 2 constitute

an equilibrium under γ ∈ {CC,DD} and γ ∈ {DC,CD}, respectively. The equilibrium

uniqueness in Proposition 1 follows from Hillman and Riley (1989) and Baye, Kovenock,

and De Vries (1996), and that in Proposition 2 follows from Siegel (2014). Lemmas 2 and 3

follow immediately from the equilibrium characterizations in Propositions 1 and 2.
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Appendix B Proofs

Proof of Theorem 1

Proof. See the proof of Theorem 2.

Proof of Theorem 2

Proof. We first prove part (i) of the theorem. From (4), it is straightforward to verify

that δ = c2
c1

maximizes TE(CC, δ; c1, c2) and TE(DD, δ; c1, c2), and the maximum expected

total effort is (c1+c2)v̄
2c1c2

. Similarly, from (5), it can be verified that either δ = c2
c1

or δ = c2
µ̂(q)c1

maximizes TE(DC, δ; c1, c2). Moreover, we have that

TE

(
DC,

c2

c1

; c1, c2

)
=

(c1 + c2)
{
µ̂2(q)v̂H(q) +

[
1− µ̂2(q)

]
v̂L(q)

}
2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
,

and

TE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=

(c1 + c2)µ̂(q)v̂H(q)

2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
.

Therefore, choosing γ ∈ {CC,DD} with δ = c2
c1

generates strictly more expected total

effort to the designer than choosing γ = DC with any δ > 0. Recall TE(DC, δ; c1, c2) =

TE(CD, 1/δ; c2, c1) from Lemma 2. This immediately implies that choosing γ ∈ {CC,DD}
with δ = c2

c1
generates strictly more expected total effort for the designer than choosing

γ = CD with any δ > 0.

Next, we prove part (ii). It is useful to prove an intermediate result.

Lemma 4 Fix q ∈ (1/2, 1]. WE(DC, δ; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

.

Proof. Fix u ∈ (0, 1) and z ∈ R++. First, for d ∈ (0, 1), we have that

∂W1(u, z, d; c1, c2)

∂d
= u2z

[
(3− u)c1 + (3− 2u)c2

]
+ (2c1 + c2) + 2

(
c2u

3z + c2

)
(1− d) > 0.
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Therefore, W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1).

Next, we show thatW2(u, z, d; c1, c2), with d ∈ [1, 1/µ], is maximized at d = 1 or d = 1/u.

Simple algebra would verify that

∂W2(u, z, d; c1, c2)

∂d
=

[
zu2W4(u, d; c1, c2)− 1

]
(3c1d+ 2c2d− 2c1)

d3
,

where W4(u, d; c1, c2) := 3(c1+c2)−u(c1+2c2d)
3c1d+2c2d−2c1

d3. Note that

∂W4(u, d; c1, c2)

∂d
=

6d2W5(u, d; c1, c2)[
c1(3d− 2) + 2c2d

]2 ,
whereW5(u, d; c1, c2) := −c2u(3c1+2c2)d2+

[
c2

1(3− u) + c1c2(2u+ 5) + 2c2
2

]
d+c1

[
c1u− 3(c1 + c2)

]
.

Note that W5(u, d; c1, c2) is concave in d, which implies that

W5(u, d; c1, c2) ≥ min
{
W5(u, 1; c1, c2),W5(u, 1/u; c1, c2)

}
, for d ∈ [1, 1/µ];

together with W5(u, 1; c1, c2) = 2c2(c1 + c2) − c2u(c1 + 2c2) > 0 and W5(u, 1/u; c1, c2) =
c1(c1(3−u)(1−u)+c2(2−u))

u
> 0, we can conclude thatW5(u, d; c1, c2) > 0. As a result, ∂W4(u,d;c1,c2)

∂d
>

0 and thus W4(u, d; c1, c2) is increasing in d for d ∈ [1, 1/u], which in turn implies that

∂W2(u, z, d; c1, c2)

∂d
≷ 0⇔ zu2W4(u, d; c1, c2) ≷ 1.

Therefore, W2(u, z, d; c1, c2) is either monotonic or U-shaped in d ∈ [1, 1/u]. This implies

that W2(u, z, d; c1, c2) is maximized at d = 1 or d = 1/u.

Finally, for d > 1, we have that

∂W3(d; c1, c2)

∂d
= −3c1d− 2c1 + 2c2d

d3
< 0,

which implies that W3(d; c1, c2) is decreasing in d for d > 1.

In summary, (i) W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1); (ii) W2(u, z, d; c1, c2)

is maximized at d = 1 or d = 1/u; and (iii) W3(d; c1, c2) is decreasing in d for d > 1. All

together, these facts imply that WE(DC, δ; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

,

which concludes the proof.

For γ ∈ {CC,DD}, we have that

∂WE(CC, δ; c1, c2)

∂δ
=
∂WE(DD, δ; c1, c2)

∂δ
=


(3c2−2c1δ+2c1)v̄

6c22
> 0, if δ < c2

c1
;

− (3c1δ−2c2+2c2δ)v̄

6c21δ
3 < 0, if δ ≥ c2

c1
.
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Therefore, WE(CC, δ; c1, c2) and WE(DD, δ; c1, c2) are both maximized at δ = c2
c1

. The

maximum expected winner’s effort is (c1+c2)v̄
3c1c2

.

Further, fixing q ∈ (1/2, 1], it follows from Lemma 4 that WE(DC, δ; c1, c2) is maximized

at δ = c2
c1

or δ = c2
µ̂(q)c1

. Carrying out the algebra, we can obtain that

WE

(
DC,

c2

c1

; c1, c2

)
=

(c1 + c2)
{

2v̄ −
[
2− µ̂(q)

] [
1− µ̂(q)

]
µ̂(q)

[
v̂H(q)− v̂L(q)

]}
6c1c2

<
(c1 + c2)v̄

3c1c2

= WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

.

Further, by Lemma 3, we have that WE(CD, δ; c1, c2) = WE(DC, 1/δ; c2, c1); together

with the above analysis, we can conclude that WE(CD, δ; c1, c2) is maximized at δ = c2
c1

or

δ = µ̂(q)c2
c1

. Moreover, we have that

WE

(
CD,

c2

c1

; c1, c2

)
= WE

(
DC,

c1

c2

; c2, c1

)
= WE

(
DC,

c2

c1

; c1, c2

)
< WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
CD,

µ̂(q)c2

c1

; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c1 + c2

[
3− µ̂(q)

]}
6c1c2

<
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

= WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
,

where the strict inequality follows from c1 ≥ c2 and 3− µ̂(q) > 2. As a result, γ = CD would

not arise in the optimum.

In summary, fixing q ∈ (1/2, 1], the expected winner’s effort from the contest is maximized

by either (γ, δ) =
(
CC or DD, c2

c1

)
or (γ, δ) =

(
DC, c2

µ̂(q)c1

)
. Carrying out the algebra, we

have that

WE

(
CC,

c2

c1

; c1, c2

)
−WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=

[
1− µ̂(q)

]
×
[
2(c1 + c2)v̂L(q)− c1µ̂(q)v̂H(q)

]
6c1c2

.

It can be verified thatWE
(
CC, c2

c1
; c1, c2

)
> WE

(
DC, c2

µ̂(q)c1
; c1, c2

)
is equivalent to µ̂(q)v̂H(q) <
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(
2 c2
c1

+ 2
)
v̂L(q), which concludes the proof.

Proof of Theorem 3

Proof. The proof of part (i) of the theorem closely follows that of Theorem 2(i), and it

remains to prove part (ii). It is useful to prove an intermediate result.

Lemma 5 Suppose that γ = DC. Fix an arbitrary tuple (vπH , v
π
L, µ

π) that satisfies (2) and

let the designer set the scoring bias δ > 0. Then the expected winner’s effort from the contest

is maximized at δ = c2
c1

or δ = c2
µπc1

.

Proof. The proof closely follows that of Lemma 4 and is omitted for brevity.

Following the same steps in the proof of Theorem 2, we can show that for an arbitrary

tuple (vπH , v
π
L, µ

π) that satisfies (2), the expected winner’s effort from the contest is maximized

by (δ, γ) = (c2/c1, CC), (δ, γ) = (c2/c1, DD), or (δ, γ) =
(

c2
µπc1

, DC
)
. The first two contest

schemes generate an expected winner’s effort of c1+c2
3c1c2

v̄, while the third one generates an

expected winner’s effort of
µπvπH(2c2+3c1−c1µπ)

6c1c2
. The optimization problem thus boils down to

max
{vπL,v

π
H ,µ

π}
WEπ := max

{
c1 + c2

3c1c2

v̄,
µπvπH(2c2 + 3c1 − c1µ

π)

6c1c2

}
s.t. (2).

It is straightforward to verify that
µπvπH(2c2+3c1−c1µπ)

6c1c2
is increasing in µπ ∈ (0, 1). By (2), we

can obtain that

µπ =
v̄ − vπL
vπH − vπL

= 1− vπH − v̄
vπH − vπL

,

which implies that µπ is decreasing in vπL. Therefore, vπL = vL in the optimum. Plugging

vπL = vL into (2) yields that vπH = vL+ v̄−vL
µπ

. Replacing (vπL, v
π
H) with (vL, vL+ v̄−vL

µπ
) in WEπ,

the above maximization problem can be further simplified as

max
µπ∈[µ,1)

max

{
c1 + c2

3c1c2

v̄,V(µπ)

}
,

where

V(µπ) :=
−c1vL(µπ)2 +

[
(4c1 + 2c2)vL − c1v̄

]
µπ + (3c1 + 2c2)(v̄ − vL)

6c1c2

,

and the constraint µπ ≥ µ is due to the constraint vπH = vL + v̄−vL
µπ
≤ vH imposed in (2).

Note that V(1) = c1+c2
3c1c2

v̄ and V(µπ) is quadratic and inverted U-shaped in µπ. Therefore,

maxµπ∈[µ,1) V(µπ) > c1+c2
3c1c2

v̄ if and only if

(4c1 + 2c2)vL − c1v̄

2c1vL
< 1 ⇐⇒ v̄

vL
> 2 + 2

c2

c1

.
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In this case, µπ = max
{
µ, (4c1+2c2)vL−c1v̄

2c1vL

}
in the optimum.

In summary, if v̄
vL

> 2 + 2 c2
c1

, the expected winner’s effort is maximized by a contest

scheme with (δ, γ) =
(

c2
µπc1

, DC
)

and

π
(
H|vH

)
= 1, π

(
H|vL

)
=

0, if v̄
vL
≥ 4− 2µ+ 2 c2

c1
,

4−2µ+2
c2
c1
− v̄
vL

2(1−µ)
, if 2 + 2 c2

c1
< v̄

vL
< 4− 2µ+ 2 c2

c1
;

otherwise, it is maximized by (δ, γ) = (c2/c1, CC) or (δ, γ) = (c2/c1, DD) with an arbitrary

information structure
{
π(·|vH), π(·|vL)

}
. This concludes the proof.

Proof of Theorem 4

Proof. From the equilibrium characterization established in Propositions 1 and 2, we can

obtain the following:

ME(CC; c1, c2) =
(3c2

1 + c2
2)v̄

6c2
1c2

, and

ME

(
CD,

µ̂(q)c2

c1

; c1, c2

)
=

{
3c2

1 + 3[1− µ̂(q)]c1c2 + [µ̂(q)]2c2
2

}
µ̂(q)v̂H(q)

6c2
1c2

.

It can be verified that ME(CC; c1, c2) > ME
(
CD, µ̂(q)c2/c1; c1, c2

)
is equivalent to

v̂L(q)

v̂H(q)
>

c2
c1
µ̂(q)

{
3− [1 + µ̂(q)] c2

c1

}
3 + ( c2

c1
)2

,

which concludes the proof.
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